Size-Controlled Synthesis of Porphyrinic Metal-Organic Framework and Functionalization for Targeted Photodynamic Therapy.

نویسندگان

  • Jihye Park
  • Qin Jiang
  • Dawei Feng
  • Lanqun Mao
  • Hong-Cai Zhou
چکیده

The understanding of nanomaterials for targeted cancer therapy is of great importance as physical parameters of nanomaterials have been shown to be strong determinants that can promote cellular responses. However, there have been rare platforms that can vastly tune the core of nanoparticles at a molecular level despite various nanomaterials employed in such studies. Here we show targeted photodynamic therapy (PDT) with Zr(IV)-based porphyrinic metal-organic framework (MOF) nanoparticles. Through a bottom-up approach, the size of MOF nanoparticles was precisely tuned in a broad range with a designed functional motif, built upon selection of building blocks of the MOF. In particular, molecular properties of the porphyrinic linker are maintained in the MOF nanoparticles regardless of their sizes. Therefore, size-dependent cellular uptake and ensuing PDT allowed for screening of the optimal size of MOF nanoparticles for PDT while MOF nanoparticle formulation of the photosensitizer showed better PDT efficacy than that of its small molecule. Additionally, Zr6 clusters in the MOF enabled an active targeting modality through postsynthetic modification, giving even more enhanced PDT efficacy. Together with our finding of size controllability covering a broad range in the nano regime, we envision that MOFs can be a promising nanoplatform by adopting advanced small molecule systems into the tunable framework with room for postsynthetic modification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Synthesis of Zn-HKUST-1 Metal-Organic Framework and Investigation its Fluorescence Sensing Ability Toward to Detect Explosive-like Nitro aromatic Analytes Such as TNT

Metal-Organic Framework (MOFs) are new crystalline materials which because of having propertiessuch as high porosity, optical and electrical properties, etc., have been considered in areas such as gasstorage, catalysis, pollutants removal and so on. Therefore, in order to develop these compounds andtheir use in this study, in this work, Zn-HKUST-1 metal-organic framework was synthesized by fast...

متن کامل

Effects of ultrasound on properties of ni-metal organic framework nanostructures

Objective(s): According to the unique properties of magnetic nanoparticles, Nickel Metal-Organic Frameworks (MOF) was synthesized successfully by ultrasound irradiation. Metal-organic frameworks (MOFs) are organic–inorganic hybrid extended networks that are constructed via covalent linkages between metal ions/metal clusters and organic ligands called a linker. Materials and Methods: The nanopar...

متن کامل

Synthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors

Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...

متن کامل

Synthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors

Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400,  500, and 600°C. It has also been found that the reaction temperature pla...

متن کامل

Catalytic Aerobic Oxidation of Alkenes by Ag@Metal Organic Framework with High Catalytic Activity and Selectivity

By coupling of Fe2O3@SiO2 particles with metal organic Framework (MOF) the magnetic MOF structure was fabricated. Precipitation and hydrothermal methods were applied for synthesis of core and MOF. Silver nanoparticles were deposited on nickel based metal organic framework surface and magnetic Fe2O3@SiO2@MOF@Ag was obtained. Because of strong coupling between silver nanoparticles and metal organ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 138 10  شماره 

صفحات  -

تاریخ انتشار 2016